# Multifunctional Core Materials for Airframe Primary Structures, Phase I



Completed Technology Project (2009 - 2009)

#### **Project Introduction**

As the use of composite materials on commercial airlines grows the technology of the composites must grow with it. Presently the efficiency gained by the utilization of core materials on composite structures can not be implemented into commercial aviation primary structures due to the poor impact performance of commercially available core materials. Patz Materials and Technologies proposes to develop a new multifunctional composite core material for airframe primary structures. The new composite core material will combine high impact performance with low weight, high acoustical absorption and high mechanical strength to greatly improve the structural efficiency of future commercial airframes.

#### **Anticipated Benefits**

Potential NASA Commercial Applications: Commercial and Military Aerospace: Increasing the strength of core material will lend itself to the application of cored fuselages. Transportation Industry: Lowering the weight of a ground transportation vehicle such as a "big rig" trailer or even a commercial automobile would reduce fuel consumption and increase efficiency. Marine: Both commercial and military naval vessels have the same efficiency versus weight problem that plagues the other transportation industries reducing the weight of naval vehicles could

#### **Primary U.S. Work Locations and Key Partners**





Multifunctional Core Materials for Airframe Primary Structures, Phase I

#### **Table of Contents**

| Project Introduction          | 1 |  |
|-------------------------------|---|--|
| Anticipated Benefits          |   |  |
| Primary U.S. Work Locations   |   |  |
| and Key Partners              | 1 |  |
| Project Transitions           | 2 |  |
| Organizational Responsibility | 2 |  |
| Project Management            |   |  |
| Technology Maturity (TRL)     | 2 |  |
| Technology Areas              | 3 |  |



#### Small Business Innovation Research/Small Business Tech Transfer

# Multifunctional Core Materials for Airframe Primary Structures, Phase I



Completed Technology Project (2009 - 2009)

| Organizations<br>Performing Work | Role         | Туре     | Location   |
|----------------------------------|--------------|----------|------------|
| Glenn Research Center(GRC)       | Lead         | NASA     | Cleveland, |
|                                  | Organization | Center   | Ohio       |
| Patz Materials &                 | Supporting   | Industry | Benicia,   |
| Technologies                     | Organization |          | California |

| Primary U.S. Work Locations |      |
|-----------------------------|------|
| California                  | Ohio |

#### **Project Transitions**

January 2009: Project Start

July 2009: Closed out

**Closeout Summary:** Multifunctional Core Materials for Airframe Primary Struct ures, Phase I Project Image

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Center / Facility:**

Glenn Research Center (GRC)

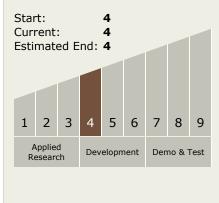
#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

## **Project Management**

#### **Program Director:**

Jason L Kessler


#### **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Nicholas Patz

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

# Multifunctional Core Materials for Airframe Primary Structures, Phase I



Completed Technology Project (2009 - 2009)

## **Technology Areas**

#### **Primary:**

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
  - └ TX12.1 Materials
    - ☐ TX12.1.1 Lightweight Structural Materials

